NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion.
نویسندگان
چکیده
The Na⁺/H⁺ exchanger NHE8 is expressed on the apical membrane of intestinal epithelial cells and is particularly abundant in the colon. Our previous study showed that Muc2 expression was significantly reduced in NHE8-knockout (NHE8-/-) mice, suggesting that NHE8 plays a role in mucosal protection in the colon. The current study confirms and extends our studies on the role of NHE8 in mucosal protection. The number of bacteria attached on the distal colon was significantly increased in NHE8-/- mice compared with their wild-type littermates. As expected, IL-4 expression was markedly increased in NHE8-/- mice compared with wild-type mice. Immunohistochemistry showed disorganization in the mucin layer of NHE8-/- mice, suggesting a possible direct bacteria-epithelia interaction. Furthermore, NHE8-/- mice were susceptible to dextran sodium sulfate-induced mucosal injury. In wild-type mice, dextran sodium sulfate treatment inhibited colonic NHE8 expression. In Caco-2 cells, the absence of NHE8 expression resulted in higher adhesion rates of Salmonella typhimurium but not Lactobacillus plantarum. Similarly, in vivo, S. typhimurium adhesion rate was increased in NHE8-/- mice compared with wild-type mice. Our study suggests that NHE8 plays important roles in protecting intestinal epithelia from infectious bacterial adherence.
منابع مشابه
Intestinal NHE8 is highly expressed in goblet cells and its expression is subject to TNF-α regulation.
While the intestine plays an important role in digestion and absorption, the mucus lining the epithelium represents a pivotal function in mucosal protection. Goblet cells are scattered in both the crypts and among enterocytes, and they secrete an important component of mucus, mucin. We have reported that sodium/hydrogen exchanger (NHE) 8 is a novel player in mucosal protection, since loss of NH...
متن کاملNHE8 plays important roles in gastric mucosal protection.
Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the e...
متن کاملLoss of NHE8 expression impairs ocular surface function in mice.
Sodium/hydrogen exchanger (NHE) 8 is expressed at the apical membrane of the epithelial cells and plays important roles in neutral sodium absorption in the gastrointestinal tract and the kidney. It also has an important role in epithelial mucosal protection in the gastric gland and the intestine. Although NHE8 has broad tissue distribution, the precise location and the physiological role of NHE...
متن کاملSaliva in health and disease, chemical biology of
Saliva is a bodily fluid secreted by three pairs of major salivary glands (parotid submandibular and sublingual) and by many of minor salivary glands. Saliva is supplemented with several constituents that originate from blood serum, from intact or destroyed mucosal and immune cells, and from intact or destroyed oral microorganisms that result in a complex mixture of a variety of molecules. Sali...
متن کاملSomatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway.
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 305 1 شماره
صفحات -
تاریخ انتشار 2013